Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ahmad Sazali Hamzah, ${ }^{\text {a }}$ Zurina Shaameri, ${ }^{\text {a }}$ Izwan A. Adziz ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.128$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl (3SR,4RS)-3-benzyl-4-hydroxy-2-oxo-pyrrolidine-3-carboxylate

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$, the pyrrolidine ring exhibits an envelope conformation with two chiral centres. In the crystal structure, the molecules are linked by N $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds to form a three-dimensional network.

Comment

Kainic acid and its derivatives have received much attention in respect of imminohistochemical, neurochemical and behavioural studies in animal systems (Mikulecka et al., 1999; Magnone et al., 2000; Jousselin-Hosaja et al., 2001). On the other hand, it is also a precursor in a multi-step synthesis of natural product components such as clausenamide, a liver protecting agent, obtained from the leaves of the plant Clausena lansium (Hartwig \& Born, 1987). The title compound, (I) (Fig. 1), was obtained as reduced kainic acid in one of several steps in the synthesis of possible derivatives of clausenamide.

The pyrrolidine ring $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 1 / \mathrm{C} 3 / \mathrm{C} 4$ has an envelope conformation, the $\mathrm{C} 2 / \mathrm{N} 1 / \mathrm{C} 3 / \mathrm{C} 4$ moiety being almost planar; the $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$ torsion angle is $-0.68(14)^{\circ}$. The relative configurations of the chiral centres at atoms C 1 and C 4 are R and S (or S and R), respectively. The bond lengths and

Figure 1

The molecular structure of the title compound, (I), with ellipsoids drawn at the 50% probability level.

Received 7 March 2003
Accepted 23 April 2003
Online 30 April 2003
angles (Table 1) are in agreement with literature values (Allen et al., 1987). The benzyl C7/C8/C9/C10/C11/C12/C13 and ester O3/O4/C4/C5/C6 groups are both planar and make angles with the pyrrolidine ring of 77.75 (7) and $48.48(6)^{\circ}$, respectively. The crystal packing is stablized by intermolecular hydrogen bonds, $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{i}}, \quad \mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{C} 11-$ $\mathrm{H} 11 A \cdots \mathrm{O} 2^{\text {iii }}$ (symmetry codes as in Table 2), forming a threedimensional network (Fig. 2).

Experimental

The synthetic approach to the title compound, (I), began with condensation between readily available glycine methyl ester and methyl malonate potassium salt in equimolar amounts to give a diester in 92% yield. Dieckmann cyclization of this diester with sodium/methanol in toluene under reflux gave a β, β-diketoester, 2,4 -dioxo-pyrrolidine-3-carboxylic acid methyl ester, in 91% yield. Alkylation of this β, β-diketoester was successfully carried out using benzyl bromide in the presence of tetrahydrofuran and tetrabutylammonium fluoride (TBAF) to give 3-benzyl-2,4-dioxo-pyrrolidine-3-carboxylic acid methyl ester in 55% yield. Reduction of the alkylated diketoester using $\mathrm{NaBH}_{4} / \mathrm{MeOH}$ gave only one isomer of (I) in 65% yield. Crystals of (I), suitable for X-ray investigation, were obtained by slow evaporation of an ethyl acetate-petroleum ether solution.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$
$M_{r}=249.26$
Orthorhombic, Pbca
$a=14.7891$ (11) \AA
$b=10.8965$ (8) \AA
$c=15.4391$ (11) \AA
$V=2488.0(3) \AA^{3}$
$Z=8$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD area-	$R_{\text {int }}=0.019$
\quad detector	$\theta_{\max }=27.5^{\circ}$
ω scans	$h=-19 \rightarrow 12$
15920 measured reflections	$k=-14 \rightarrow 13$

15920 measured reflections
2859 independent reflections
2429 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.128$
$S=1.06$
2859 reflections
163 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 5914 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slab, colourless
$0.48 \times 0.36 \times 0.14 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.019 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-19 \rightarrow 12 \\
& k=-14 \rightarrow 13 \\
& l=-20 \rightarrow 19
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0755 P)^{2}\right. \\
& +0.3864 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA^{\circ}\right)$.

N1-C3	$1.3313(15)$	C4-C5	$1.5166(15)$
N1-C2	$1.4448(16)$	C4-C7	$1.5468(16)$
O1-C1	$1.3988(15)$	C7-C8	$1.5094(17)$
O2-C3	$1.2266(15)$	C8-C13	$1.3833(19)$
O3-C5	$1.3210(17)$	C8-C9	$1.3839(19)$
O3-C6	$1.4535(16)$	C9-C10	$1.381(2)$
O4-C5	$1.1994(15)$	C10-C11	$1.370(3)$
C3-C4	$1.5307(15)$		
C3-N1-C2	$115.41(10)$	C5-O3-C6	$116.07(12)$

Figure 2
Packing diagram of (I), viewed down the b axis. The dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.08	$2.8847(14)$	157
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.91	$2.7309(14)$	176
$\mathrm{C}^{\text {iii }} 1-\mathrm{H} 11 A \cdots \mathrm{O}^{2}$	0.93	2.56	$3.4747(19)$	169
Symmetry codes: (i) $\frac{1}{2}+x, y, \frac{1}{2}-z ;$ (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (iii) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$				

After their location in a difference Fourier map, all H atoms were included in the refinement in geometrically calculated positions, and allowed to ride on the parent C, N or O atoms with $\mathrm{C}-\mathrm{H}=0.97 \AA$, $\mathrm{N}-\mathrm{H}=0.89 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and both Universiti Teknologi MARA and Universiti Kebangsaan Malaysia for the research grants IRPA Nos. 09-02-01-000509 and 09-02-02-0163, respectively.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Hartwig, W. \& Born, L. (1987). J. Org. Chem. 52, 4352-4358.
Jousselin-Hosaja, M., Venault, P., Tobin, C., Joubert, C., Delacour, J. \& Chapouthier, G. (2001). Behav. Brain Res. 121, 29-37.
Magnone, M. C., Rosssolini, G., Piantanelli, L. \& Migani, P. (2000). Arch. Geront. Geriat. 30, 269-279.
Mikulecka, A., Hilnak, Z. K. \& Mares, P. (1999). Behav. Brain Res. 101, 21-28. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

